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ABSTRACT 

The thermomechanical response of a uniaxial bar with thermoviscoplastic 

constitution is predicted herein using the finite element method. After a 

brief review of the governing field equations, variational principles are con- 

structed for the one dimensional conservation of momentum and energy equations. 

These equations are coupled in that the temperature field affects the displace- 

ments and vice versa. 

Due to the differing physical nature of the temperature and displacements, 

first order and second order elements are utilized for these variables, respec- 

tively. The resulting semi-discretized equations are then discretized in time 

using finite differencing. This is accomplished by Euler's method, which is 

utilized due to the stiff nature of the constitutive equations. 

The model is utilized in conjunction with stress-strain relations devel- 

oped by Bodner and Partom to predict the axial temperature field in a bar sub- 

jected to cyclic mechanical end displacements and temperature  boundary condi- 

tions.  It is found that spacial and time variation of the temperature field 

is significantly affected by the boundary conditions. 

TABLE OF SYMBOLS 

t - time 

P - axial internal resultant force 

p - axial externally applied force per unit length 
X 

x - axial coordinate dimension 

a    -  axial stress component 

A - cross-sectional area 

T - end traction in units of force per unit area 
x 

s - surface area 



Table of Symbols (cont.) 

S - area of the longitudinal surface of the bar 
c 

e - axial strain component 

u - axial displacement component 

a - internal state variable representing axial inelastic strain 

E - Young's modulus in the axial coordinate direction 

a - coefficient of thermal expansion in the axial coordinate direction 

T - temperature 

T - reference temperature at which no deformation is observed at zero load 
R 

a. - internal state variable representing drag stress 

q - axial component of heat flux 

k - coefficient of axial thermal conductivity 

C - specific heat at constant elastic strain 
v 

p - mass density 

r - internal heat source per unit mass 

L - length of the bar 

INTRODUCTION 

It is well known that mechanical and thermodynamic coupling are signif- 

icant in metallic solids [1-11]. The author has recently developed a model 

capable of predicting this coupling effect in thermoviscoplastic metals [12]. 

In the previous paper a cyclic strain control loading on a sample of INI00 at 

1005°K (1350°F) was used to predict a temperature rise of approximately 3.7°K 

per cycle when the strain amplitude was 2% and the specimen was adiabatically 

insulated. 

The focus of the current research is to consider the effect of thermal 

boundary conditions on this same process.     The introduction of these 



conditions causes the strain and temperature fields to be inhomogeneous even 

though the stress field is homogeneous if the bar is prismatic. This spacial 

variation in the field variables causes the process to be difficult to model 

because the thermomechanical constitutive equations are highly nonlinear stiff 

differential equations.  In this paper the finite element method is utilized 

to spatially discretize the dependent variables displacement and temperature, 

and the finite difference method is employed for timewise discretization. 

This process results in a set of highly nonlinear algebraic equations. 

Since the thrust of this research is to obtain accurate results without 

regard to numerical efficiency, the results are obtained via the relatively 

inefficient but accurate method of simply utilizing successively smaller time 

steps along with refined spatial mesh to obtain a convergent and therefore 

accurate solution for the temperature and displacement fields both spatially 

and as a function of time for a cyclically imposed end displacement. 

The physical interest in the problem is to determine the effect of 

temperature boundary conditions on the predicted temperature rise in a bar sub- 

jected to cyclic mechanical loading. It is found from the analysis that the 

introduction of these nonadiabatic boundary conditions causes significant axial 

temperature gradients.  Since nonadiabatic conditions cannot be avoided in 

experimental research, it is concluded that experimental tests of this type 

should be viewed with caution when their purpose is to construct constitutive 

relations. 

PROBLEM SOLUTION 

Field Problem Description 

The following field equations are given: 

a) equilibrium [13], 

3P = -P  (x)  , Ü) 
3x    X 



where the axial resultant P is dfefined by 

P = /  <jdA 9 and (2) 

* 

> (3) 
* 

S 
c 

b) strain-displacement relat 

3u 
3x 

ion 

(4) 

c) thermomechanical constitution, 

a = E[e - a. - a(T - TR)] s (5) 

3a.j_ 

3t ~ %<
e» T ,,a.)  , i = l»z   , and (6) 

, 3T 
(7) 

where z is the total number < 3f internal state variables ; and 

d) conservation of energy 

[« 
3 a. 

£ - Ea, + EaT_) —-=; + Ea2 
i      K.   at 

3Tl T at J " Ea T 3e 3t    v 
3T 
3t " 

3q ^ = 0 (8) 

The conservation of mass is satisfied trivially and the second law of thermo- 
> 

dynamics has been previously shown to be satisfied by the above equations [14- 

16] It should be noted that equilibrium equation (1) satisfies equilibrium 

in the axial coordinate dire stion only in an average sense over the cross- -section. 

4 



The above 6+Z equations (excluding definition (3)) define a nonlinear 

initial-boundary value problem (together with appropriate thermal and mech- 

anical initial and boundary conditions) in which the following dependent vari- 

ables are sought as functions of x and t: a,   e, u, q, T, P, and a.. 

For convenience the domain is defined to be of length L, so that boundary 

and initial conditions are of the form: 

u(x,0) = u = known 

T(x,0) = TK  = known 

initial conditions (9) 

and 

u(0,t) =  u° = known or P(o,t) 

essential 

boundary 

conditions  I T(Q,t) 

u(L,t) = u = known or P(L,t) 

- „0 T" = known or q(0,t) 

= P = known 

_ L = P = known 

0 
= q = known 

T(L,t) =  T = known or q(L,t) = q = known 

natural 

boundary 

conditions. (10) 

It is now assumed that a = a(x) so that equation (2) reduces to 

P = ok (ID 

Therefore, substituting (4) into (5) and this result into (11) gives 

P = EA [t - ai -a(T - v] (12) 

The above result is now substituted into (1) to obtain 

3_ 
3x 
{^[fH-^-aCT-v]}- -Px(x) (13) 



which represents the differential equation relating displacements and temper- 

ature to the applied load p (x). 

Equations (4) and (7) are next substituted into energy balance law (8) 

and this result is integrated over the cross-sectional area A to obtain 

3T 
3t (E |H - Eat +   EaTR)^    + Ea*   T |f] - AEa T |^ - A pCv 

+ A|_(k|l\= _A..pr , (14) 
dx  \     dx / 

where it has been assumed that all field variables depend on x and t only. 

Now define 

Q^qdA=-y*k|ldA = -kgA   . (15) 

A       A 

Careful inspection of equations (13) and (14) will indicate that these 

equations, together with internal state variable growth laws (6) and initial 

and boundary conditions (9) and (10), represent a well-posed boundary value prob- 

lem in terms of the 2+z dependent variables u, T, and a. . 

Solution Procedure 

The field problem is to be solved analytically using the semi-discretized 

finite element technique with timewise finite differencing.  In order to ac- 

complish this, differential equations (13) and (14) must first be written in 

a suitable variational form. 

Variational Equations 

Consider first equation (13).  This governing equation is integrated against 

a suitably smooth test function v = v(x) over the domain of some element ti   : 

x < x < x ,, : e       e+1 



*e+i r 

a, - a(T - T ) 
R ■]} + P x dx = 0 (16) 

Integrating by parts results in 

-  /■*&[£- »i" a(T' v]"*"" v U[H - ai" a(T - v] 
e+l 

X 

X 

£e+l 

i    v p dx 
x 

(17) 

Substituting equation (12) into the boundary term thus results in 

re+1        r 
-  /    EA3x-[3x- a, - a(T - ■] TR)| dx = 

-v(xe+1) P(xe+1) +v(xe) P(xe) 

2e+l 

-    J V 
X 

p dx 
x 

(18) 

Now consider equation (14).  Once again the governing equation is inte- 

grated against a suitably smooth test function w = w(x) over the domain of the 

element ti  : 

wJA (E^-Ea1+EaTR)3^ 
?  3T + Ea  T ai 

-AEcOC 
32u 
3t3x 

3T 
ApC -T£ + A 

v 3t 3x \K3t ^ 
+ A pr >dx = 0 (19) 



Integrating the heat flux term by parts results in 

x f -kA ^r— -r— + wA 
3x <3x (Efe-Eai+EaT

R)^r 
2  3T 

+ Ea2T 3- 
dt 

-,-* 

-EaT 
3fu_ 
3t3x 

►dx = w(xe+l} Q(xe+1) 
w(xe) Q(xe) 

+ 

x 

re+1 

J   wA(pCvlf-pr) pr ) dx (20) 

where equation (15) has been substituted into the boundary terms. 

Finite Element Spacial Discretization 

Quadratic displacement and linear temperature fields are now chosen within 

each element: 

e ,e 
u(x,t) = Z u. f.  , x < x < x .   , and 

i=l l x e+1 
(21) 

_e ,e 
T(x,t) = Z T. <J>.  , , x < x < x 

i=l i x e+1 
(22) 

where uS = u?(t) and T? = T?(t) are the nodal displacements and temperatures, 
l   i        x   i 

6     6 6     6 
respectively, and i>   = ty  (x) and <j>. = <}>. (x) are quadratic and linear shape i        i xx 

functions,   respectively   [17]. 

Appropriately,  v and w are endowed with the properties  of u and T,   respec- 

tively,   so  that 

8 



vEfe  i = 1,2,3 
l 

w = <j).  i = 1,2 (23) 

Substitution of equations (12) and (21) through (23) into variational principle 

(18) results in 

x 

-../ 

e+1        dip? r 

EA -3-i 
dx M£-;**/-°i 

-«(j^J*?-^)}--*! <*eH>P<W  + *i<*e>  «%' 

/     < 
p dx     ,       i =   1,2,3 (24) 

The above may be written in the following compact form 

3 2 
Z    K?.   uS +    Z    Se.  Te = Fe       ,       i =  1,2,3, 

J-l     1J     J       j-1     1J     2 * 

(25) 

where 

x 

K. 
ij 

-./ 

e+1 j , e   , . e dijj    dip 
EA J^J

1
 dx 

dx    dx 
i = 1,2,3;  j  -  1,2,3       ; (26) 

,e    s 
lij 

x 

/ 

e+1 j,e 
<^± e 

EAa -j— d>.  dx dx Tj 
i =   1,2,3;  j  =  1,2 (27) 



•e+1    di>e /dip. 
m dbT   (~al + aTR)dx 

X 

/e+l 

p dx ,     i = 1,2,3. 
x 

(28) 

Similarly, substitution of equations (21) through (23) into equation (20) re- 

sults in 

x 

/ 

e+l 

dx    3x\      L    j
rj ' 

<j>e    (E |-(   Z    uj|;e) - Ea. 

+ EaT YP-+^(l ^)Ui TV) R/3t Vj-i    rj/3t\m=1    mV 

- Ea Q.^*')Ml«). dx = 

e+l 

#*e+l>  <***!>  ' *i(xe}  ^xe> +     / *i A 
- L-(z Tv \ _ Jv 3t \       mm/ 

dx, 

i = 1,2. (29) 

Equations (29) may be written in the following form: 

3 2 e+l 
Z K6. ue + Z S?. Te +  f    cj)e A 

j=l  J  J   3-1     J  XQ 

Ea' Z I6*6 
2 dT 
Z 

,m=l 

m ,e 
dtT^m 

10 



-Eol 2 X?4>J 
3 due dip6' 
z     m    m 

,m=l 
dt dx 

2 dT 

im=l 

dx 

Le+1 3a, 
= - f cj>* A(-Ea1 + EaTR) ^- - Q(xi)  ,     i - 1,2, (30) 

where 

Ke 
1J 

xe+l     dif/f 3a, 
. =   f   AE (J)e -j-J- -^r- dx 

x 
= 1,2; j = 1,2,3; and   (31) 

*e+l   &£  d<j>* 
ST. S -  /    kA -r-^-^-1 dx 

J    x 
e 

dx dx 
= 1,2; j = 1,2. (32) 

Finite Difference Timewise Discretization 

Time dependence in equations (6) and (30) is handled via finite differ- 

encing.  Although higher order approximations may be used, Euler forward dif- 

e  e 
ference approximations are now entered for the time rate of change of a^, Tm, 

and u . 
m 

3 a, 
^= (x,t) s Iak (x,t + At) - c^ (x,t)]/At,   k - 1, . ..,z (33) 

dTe m 
dt (t) [T  (t + At) 

m 
T: (t)]/At, 
m 

m = 1,2 ,      and   (34) 

du m 
dt (t) = [u (t + At) 

m 
u" (t)]/At, 
m 

m = 1,2,3- (35) 

11 



Substitution of   (33)   through   (35)   into finite element equations   (30)  gives 

3    _ 2 
Z    K?.   ue +    Z    Se.  T. 

J-l    1J     3       J-l     1J     J 

e+1 
+     / A^ 

x 
e 

Ea" Z    Te(j)e C 
2   /T"(t + At) 
Z   '   m 

m-1 
At I Ym 

-Ea Z    I6*6 
3,u«(t+At)  - <(t)v3^ 

m=n At 3 x 

-PC 
2   /T   (t + At)  - 2   /T 
Z   (-Ü 

m=l ^ 

<£«=> 
At )< 

+ pr ► dx 

x 
e+1 3a, 

A4»* [-Ettj (t) + EaTR] -^- (t) 
Le 

-Q(x±)       . i =  1,2 (36) 

The above may be written as follows: 

3 2 
Z K?. u? + Z S6. T 

J-l  1J J  j-l  1J  J 

2  2 2 
+ Z  Z C... TS Tf + Z D.. T. 

k=1 j=i  ^
k J k  j-i  ^  3 

2  3 2 
+ Z  Z E., . Tf u + Z G.. T. 

k=l j=i  
lkJ  k 3  j=i  «  3 

+ Z H.. TT = FT 
j-l  1J  J    X 

i = 1,2, (37) 

12 



where 

C. ., 
ijk r Le Ea     ,e   ,e 

A(^
e £*_ tf «j,« dx     , i =  1,2;  j  = 1,2;  k = 1,2   ,   (38) 
x At      j    k 

x 

'il -r A*iir ^(tx*?2 +T2(t) ^ dx> i = 1,2    ,   (39) 

x 

x 

'12 -/ 

e+1 

A*i fr [T!(t)*i*2 + T2Ct)C*2>2] dXs i -  1,2     ,   (40) 

x 

'ikj 

x   . i 

. ,e Ea   ,e    r3   , 
A*i ÄE *k 3^ dx i = 1,2,;  k =  1,2;  j  =  1,2,3,   (41) 

x 

Gil 

I 1 I™ 

X 

e  3*J e e  ^2 e e  ^3 dx,   i =  1,2   ,   (42) 

'±2 ■/ 

e+1 
ae Ea 
A*iÄi" 

"e e 3*1 e e^2 e e3*3 dx   ,   i =  1,2   ,   (43) 

H. .  = 
-/ 

e+1 
e pCv 

A*i IT ** dx i =  1,2;   j  =  1,2; 

x 

and  (44) 

Fe E 
l 

?e+l 

- /   *; 

pC     /    2 

At 
2    TeM^ /+ pr 

3=1    J J' 

dx 

/e+1 

A<f>®  [-Eax 

3a1 

(t) + EaTR]  g^- (t)  dx 

-Q(x.) i = 1,2 (45) 

13 



Equations (37) may be written equivalently as follows: 

3 _       2 
Z  K6. ue + E S0. Te = Fe 

j=l 1J  J  j=l  1J  J   X 
(46) 

where K.. and F. are as defined previously, and 

K6. = Ke. + Z    E,,, T* 
ij   ij  k=1  

lkJ  k 
and (47) 

ST. E S?. + Z    C. ., T. + D. . + G. . + H. . 
ij   iJ  k=1 ijk k   ij   ij   xj 

(48) 

The above equations may be adjoined with equations (25) to obtain the following 

set of nonlinear equations for each element. 

(49) 

where all nonlinearity is contained in [S], {F }, and {Fj. 

Global Assembly and Boundary Conditions 

Global assembly is accomplished in the standard way using the Boolean 

matrix [17].  Interelement continuity is guaranteed by setting 

Pe + Pe+1 
2   1 

= 0 

= 0 

and (50) 

(51) 

Boundary conditions are implemented in the standard way:  1) essential 

boundary conditions are handled by placing one on the diagonal of the 

14 



appropriate row and zeros off diagonal in the stiffness matrix, and the speci- 

fied value of the essential variable on the right hand side; and 2) natural 

boundary conditions are implemented directly to the right hand side. 

Solution of the Nonlinear Algebraic System 

Initial conditions are used for the first time step. The time step At 

is supplied for each load increment and boundary conditions are incremented 

directly from supplied input functions. 

The internal state variable a is handled in equations (23) and (45) by 

using equations (35).  a., is initialized according to reference 18. The non- 

linear stiffness matrix [S-] is initialized using nodal temperatures and displace- 

ments from the previous time step.  The displacements and temperatures at time 

t+At are then estimated directly and without iteration by utilizing equations (49) 

for very small time steps. 

15 



EXAMPLE PROBLEMS 

In order to completely define an example problem it is necessary 

to specify internal state variable growth laws (6). Numerous models 

have been proposed for crystalline metals [18,19]. Since it is not the 

purpose of this research to compare these models, a relatively 

established model proposed by Bodner and Partom [20] has been chosen. 

This model contains two internal state variables: the inelastic strain 

(ct ) and the drag stress (og). The growth laws for these variables are 

given by 

" i = I D° "R exp "(H^W 
2n 

(52) 

and 

o 2 = m(Zi - a2) aai - AZi (
a2
z 

Zlj (53) 
I ' 

where D , n, m, Z , Z , and r are experimentally determined material 

constants. 

For the purpose of modeling the temperature gradient in a specific 

component, a hypothetical problem has been chosen using material 

properties representative of Inconel 100 at 1005°k (1350°F). The 

material and geometric properties are given in Table I. The geometry is 

representative of a cylindrical uniaxial bar which is 2.50 inches long 

and 0.25 inches in diameter. It has previously been shown that Bodner 

and Partom's model accurately predicts the stress-strain behavior of 

IN100 under uniaxial loading conditions for both monotonic and cyclic 

strain controlled loadings [12,18]. 

16 



pC    = 5.032 MPa/°K v 

a  = 13.14 x 10"6 in/in/°K 

—6      7 
k  = 21.0 x 10  MPa M 

sec°K 

E  = 146.86 x 103 MPa 

A  = 7.12557 x 10"5 m2 

Ta = 1005°K 

L  =  .06350 m 

3 
DQ = 10 x 10 in/in 

n =0.70 

m. = 2.57 

Z,  = 1015.0 

Zj =600.0 

= 2.66 

Table I-.  Material Properties for IN 100 at 1005°K (1350°F) 

17 



Utilizing the material properties described above, the following 

effects have been studied using the model developed herein: 

1) the effect of variation of strain rate on the time dependence 

of temperature at the midpoint of a monotonically extended uniaxial bar 

which is insulated on the longitudinal boundaries [Figs. 1-4]; 

2) the spacial variation of temperature for the case above [Fig. 

5]; 
and 

3) the effect of end temperature boundary conditions on the 

temperature at.the center of a uniaxial bar which is held at fixed 

temperature at the end points and subjected to cyclically imposed end 

displacements [Figs. 8 and 9]. 

Examples 1 and 2 are constructed primarily to determine the effects 

of thermomechanical heating on the stress-strain behavior of uniaxial 

constitutive specimens. It is found in examples 1 and 2 that if a 

specimen is mounted in an experimental apparatus which has massive grips 

simulating a fixed temperature boundary condition there can be 

substantial axial temperature gradients induced in a time dependent 

boundary layer near the ends of the specimen. On the other hand, these 

boundary conditions do not appear to substantially affect the predicted 

stress-strain behavior, especially when the strain measurement is taken 

between the thermal boundary layers near the grips. Therefore, it would 

appear that the standard procedure for obtaining stresses and strains in 

uniaxial bars is not substantially affected by mechanically induced, 

axial temperature gradients when the grips are at fixed temperature 

equivalent to the initial specimen temperature and the bar is loaded 

monotonicalaly. However, it should be noted that massive grips which 

are mounted outside a furnace could, by their much lower temperature 

18 
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X 
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.010 

Fig. 1.  Predicted Stress vs. Strain for a Uniaxial Bar 
Pulled at Various Constant Strain Rates. 
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than the initial speciman temperature, may induce significant error in predicted 

strains if the strain is measured by dividing relative displacement by some 

gage length. 

The final example demonstrates that under cyclic loading conditions the 

above conclusions may not necessarily be true, especially when the specimen is 

subjected to high-cycle fatigue and at high strain rates. There is definitely 

a trend towards an increasing mean temperature in the bar, and this mean tempera- 

ture is strongly affected by the thermal boundary conditions as well as the 

loading rate.  Although it would be interesting to determine the mean temperature 

rise in a cyclic fatigue test, the current algorithm precludes this analysis due to 

the extremely large computer times necessary to predict only a few cycles of 

response (approximately 43.8 GPU minutes on an Amdahl 470/V6 for the example 

demonstrated in Figs. 6 and 7). 

Example 3 also demonstrates another interesting phenomenon which may be 

significant in large space structures.  If the bar is perfectly insulated the 

mean temperature rise per cycle for the relatively slow loading rate shown in 

Fig. 6 is 3.7°K, whereas if the ends of the bar are held at a fixed temperature of 

1005°K, the mean rise is 1.0°K-per cycle. Faster loading rates show less difference 

between the adiabatic result and the fixed end temperature result.  Since many 

of these structures are expected to be extremely flexible truss-like configurations, 

a typical metallic member which undergoes some yielding (which might be desirable 

in order to induce natural damping) might in fact undergo substantial enough 

heating during vibrational response such that the material properties could be 

adversely affected, thus resulting in a material related failure of the structure. 

However, further investigation is needed on this last issue since it is expected 

that the primary form of heat flux off of space structures will be via radiation 

on the longitudinal surfaces of the truss member.  Since the current analysis 
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has treated these surfaces as insulated, no general statements can be made at 

this time regarding thermomechanical heating in space structures. 
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CONCLUSION 

The current research has attemped to demonstrate the effects of 

mechanical loading on one-dimensional temperature gradients in a class 

of viscoplastic media. Due to the nonlinearity and stiffness of the 

field equations, it was necessary to utilize a numerical algorithm. 

This algorithm has been shown to be very inefficient for solving even 

one-dimensional examples. Therefore, it is apparent that significant 

refinement of the procedure will be necessary before multi-dimensional 

analyses can be performed by this method. Specifically, it would be 

significant to determine the effect of transverse temperature gradients 

on the stress-strain behavior of constitutive specimens. Furthermore, 

the effects of thermal boundary conditions on the longitudinal surface 

needs attention. The author is currently studying a perturbation 

technique for more efficient solution of these issues. 

The above points notwithstanding, the current research demonstrates 

some important results. These are: 

1) The axial temperature gradient in a viscoplastic uniaxial bar 

is strongly affected by the thermal boundary conditions on the ends. 

2) The end temperature boundary conditions can cause temperature 

gradients which are substantial enough to induce spacial variations in 

stress and strains which invalidate the standard procedure of using 

average quantities, although when grips are mounted within a furnace at 

spacially constant temperature, it appears that the standard procedure 

is accurate. 
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3) There is a trend toward increasing average temperature in 

cyclically loaded bars; whether or not this effect is significant is 

strongly dependent on the thermal boundary conditions and the loading 

rate. 

29 



ACKNOWLEDGEMENT 

The author gratefully acknowledges the support provided for this 

research by the Air Force Office of Scientific Research under contract 

no. F49620-83-C-0067. 

30 



REFERENCES 

[I] J.M.C. Duhamel, Memoire sur le calcul des actions moleculaires 
developpees par les changements de temperature dan les corps 
solides. Memoires par divers savans, vol. 5, pp. 440-498, (1838). 

[2] F. Neumann, Vorlesungen über die theorie der elasticitat der festen 
Korper und des lichtathers. Leipzig, 107-120, (1885). 

[3] B.A. Boley and J.H. Weiner, Theory of Thermal Stresses. Wiley, New 
York, (1960). 

[4] O.W. Dillon, Jr., An experimental study of the heat generated 
during torsional oscillations. J. Mech. Phys. Solids, vol. 10, 
235-244 (1962). 

[5] O.W. Dillon, Jr., Temperature generated in aluminum rods undergoing 
torsional oscillations. J. Appl. Mech. 33, vol. 10, 3100-3105 
(1962). 

[6] O.W. Dillon, Jr., Coupled thermoplasticity. J. Mech. Phys. Solids, 
vol. 11, 21-33 (1963). 

[7] G.R. Halford, Stored Energy of Cold Work Changes Induced by Cyclic 
Deformation. Ph.D. Thesis, University of Illinois, Urbana, Illinois 
(1966). 

[8] O.W. Dillon, Jr., The heat generated during the torsional 
oscillations of copper tubes. Int. J. Solids Structures, vol. 2, 
181-204 (1966). 

[9]. W. Olszak and P. Perzyna, Thermal Effects in Viscoplasticity. IUTAM 
Symp., East Kilbride, 206-212, Springer-Verlag, New York (1968). 

[10] J. Kratochvil and R.J. DeAngelis, Torsion of a titanium elastic 
viscoplastic shaft. J. Appl. Mech. vol. 42, 1091-1097 (1971). 

[II] E.P. Cernocky and E. Krempl, A theory of thermoviscoplasticity 
based on infinitesimal total strain. Int. J. Solids Structures, 
vol. 16, 723-741 (1980). 

[12] D.H. Allen, A prediction of heat generation in a thermoviscoplastic 
uniaxial bar. Texas A&M University Mechanics and Materials Center 
Report no. MM 4875-83-10 (July 1983), (accepted for publication by 
Int. J. Solids Structures). 

[13] D.H. Allen and W.E. Haisler, Introduction to Aerospace Structural 
Analysis. John Wiley (1985), in press. 

31 



[14] B.D. Coleman and M.E. Gurtin, Thermodynamics with internal state 
variables. J. Chem. Phys., vol. 47, 597-613 (1967). 

[15] J. Kratochvil and O.W. Dillon, 
elastic-viscoplastic materials. 

(1970). 

Jr., Thermodynamics of crystalline 
J. Appl. Phys., vol. 41, 1470-1479 

[16] D.H. Allen, Thermodynamic constraints on the constitution of a 
class of thermoviscoplastic solids. Texas A&M University Mechanics 
and Materials Center, Report no. MM 12415-82-10, December (1982). 

[17] J.N. Reddy, An Introduction to the Finite Element Method. McGraw- 
Hill, New York (1984). 

[18] T.M. Milly and D.H. Allen, "A Comparative Study of Nonlinear Rate- 
Dependent Mechanical Constitutive Theories for Crystalline Solids 
at Elevated Temperatures, Virginia Polytechnic Institute and State 
University, March, 1982 (M.S. Thesis). 

[19] D.H. Allen and J.M. Beek, "On the Use of Internal State Variables 
in Thermoviscoplastic Constitutive Equations," Proceedings 2nd 
Symposium on Nonlinear Constitutive Relations for High Temperature 
Applications, June, 1984. 

[20] S.R. Bodner and Y. Partom, "Constitutive Equations for Elastic- 
Viscoplastic Strain-Hardening Materials," J. Appl. Mech, Vol. 42, 
385-389 (1975). 

32 


